Controlled Microwave Heating Accelerates Rolling Circle Amplification

نویسندگان

  • Takeo Yoshimura
  • Takamasa Suzuki
  • Shigeru Mineki
  • Shokichi Ohuchi
  • Shuang-yong Xu
چکیده

Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Discovery of Rolling Circle Amplification and Rolling Circle Transcription.

Nucleic acid amplification is a hugely important technology for biology and medicine. While the polymerase chain reaction (PCR) has been highly useful and effective, its reliance on heating and cooling cycles places some constraints on its utility. For example, the heating step of PCR can destroy biological molecules under investigation and heat/cool cycles are not applicable in living systems....

متن کامل

Biophysical and chemical handles to control the size of DNA nanoparticles produced by rolling circle amplification.

Although rolling circle amplification (RCA) is an efficient method to produce DNA materials for biomedical applications, it does not yield nano-sized products suitable for intracellular delivery. We here provide the ways to control the size of RCA products and show a potential application of the size-controlled DNA nanoparticles.

متن کامل

Rolling Circle Amplification (RCA): an approach for quick detection and identification of fungal species

Conventional methods for fungal identification in the clinical laboratory rely on morphological andphysiological tests. These tests often need several days or weeks to complete and are frequentlyunspecific. Molecular identification mostly implies sequencing, which is relatively expensive andtime-consuming, as well as impractical for large numbers of isolates. The Rolling CircleAmplification app...

متن کامل

Genetic Analyses using Rolling Circle or PCR Amplified Padlock Probes

ABBREVIATIONS bp base pair cDNA complementary DNA CV coefficient of variation DNA deoxyribonucleic acid FRET fluorescence resonance energy transfer HRCA hyperbranched rolling circle amplification LN lymph node nt nucleotide OLA oligonucleotide ligation assay PCR polymerase chain reaction RCA rolling circle amplification RCR rolling circle replication RNA ribonucleic acid SCA serial circle ampli...

متن کامل

A netlike rolling circle nucleic acid amplification technique.

A nucleic acid amplification technique termed as netlike rolling circle amplification is proposed by introducing a nicking enzyme into the existing hyperbranched rolling circle amplification system. Surprisingly dense and uniform network morphology is observed; and cubic amplification is achieved for the sensitive detection of a sequence from HIV.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015